

INDIAN SCHOOL AL WADI AL KABIR Class VIII, Mathematics WORKSHEET-CUBES AND CUBEROOTS (2025-26)

Multiple Choice Questions									
Q.1.	Which of the following is equal to its own cube?								
	Α	-1	В	-2	С	-3	D	-9	
Q.2.	How many digits will be there in the cube root of 46656?								
	Α	5	В	4	С	3	D	2	
Q.3.	If $\sqrt[3]{185193} = 57$, then the value of $\sqrt[3]{185193} + \sqrt[3]{185.193} + \sqrt[3]{0.000185193}$ is								
	Α	6.327	В	63.275	С	632.75	D	62.757	
Q.4.	The value of $\frac{\sqrt[3]{125} + \sqrt[3]{216}}{\sqrt[3]{1331}}$ is								
	Α	1	В	5	C	6	D	11	
Q.5.	Which letter best represents the location of $\sqrt[3]{343}$ on a number line?								
	A B C D -10 1 2 3 4 5 6 7								
	Α	А	В	В	С	С	D	D	
Q.6.	The smallest number which is to be added to 725 to make it a perfect cube is:								
	Α	4	В	5	С	6	D	9	
Q.7.	The prime factorization of a number is given as $2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 7$. What								
	would be smallest number by which the given factors should be divided so that the result obtained is a perfect cube?								
	Α	7	В	8	С	49	D	27	
Q.8.	If $\sqrt[3]{\frac{x}{y}} = \frac{7}{9}$, then $\frac{x}{y} =$								
	Α	49 81	В	343 729	С	49 729	D	$\frac{343}{81}$	

Q.9	The digit in the ones place of the cube of a number having 7 at its one's place is									
	Α	9	В	3	С	7	D	4		
Q10	Which of the following is a perfect cube?									
	Α	10000	В	243	С	343	D	270000		
	LONG ANSWER QUESTIONS:									
11	Sujatha makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many minimum such cuboids will she need to form a cube?									
12	Evaluate: $\sqrt[3]{1000} + \sqrt[3]{0.125} - \sqrt[3]{0.008}$									
13	The volume of a cube is $9261000m^3$. Find the side of the cube.									
14	Find the value of $\sqrt[3]{27 \times 2744}$									
15	Evaluate the cube root of $\frac{686}{1024}$									
16	Find the cube root of 5832 by the method of prime factorization.									
17	Find the smallest natural number by which 53240 must be divided so that the quotient obtained is a perfect cube.									
18	Find the smallest number by which 3645 must be multiplied so that the product obtained is a perfect cube.									
19	Three numbers are in the ratio 2:3:4. If the sum of their cubes is 33957, find the numbers.									
	CASE STUDY-1:									
	Mohan has to prepare a physics project in form of a cubical box for a social work campaign									
	but he had a cuboidal box of sides 4 cm, 3 cm, 4 cm. Now he has to change it in the form									
1	of cube so that he can complete his project. For this, he needed more cuboids so that he									
	can make his project in form of cube.									
	 (a) What is the volume of the cuboidal box? (b) How many cuboids are more needed? (c) Find value of (0.02)³. 									
20	can make his project in form of cube. (a) What is the volume of the cuboidal box? (b) How many cuboids are more needed?									

ANSWERS									
Q.1	А	Q.2	D	Q.3	D	Q.4	Α		
Q.5	D	Q.6	Α	Q.7	С	Q.8	В		
Q.9	В	Q.10	С	Q.11	20	Q.12	10.7		
Q.13	210m	Q.14	42	Q.15	$\frac{7}{8}$	Q.16	18		
Q.17	5	Q.18	25	Q.19	14, 21, 28	Q.20	48 <i>cm</i> ² ,36, 0.000008		